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(U) DRACO: An Overview

John L. Barber (T-1)



Diffusion Chemistry Sources/Sinks

…

Introduction

The set of partial differential equations solved by DRACO are of the typical reaction-diffusion form:

Time derivatives
of temperature,
concentration,
pressure, etc.

Diffusion coefficients
(May depend on position,
time, concentration, etc.)

General, nonlinear
chemistry

Arbitrary
sources/sinks

DRACO allows an arbitrary number of diffusers (u, v, …), as well as an arbitrary number of parts which may communicate
(i.e. exchange material) in an any arbitrary way.



Meshing: DRACO “Native” Shapes
DRACO can generate its own meshes on a
set of simple shapes such as spheres, cones,
boxes, tori, etc.

DRACO also performs all of its own ray
tracing and image rendering, without
relying on any external library or software.

In general, DRACO has been written with the
goal of avoiding external libraries or software
whenever possible. This was to ensure that it
works “out of the box.”

The major exception to this is the use of the Voro++
Voronoi tessellation library, which is available for
free from the LBNL website.



Meshing: Radially-Symmetric Shapes

DRACO also has the capability to mesh arbitrary
radially-symmetric shapes using a meshing scheme
known as Fibonacci meshing.

Fibonacci meshing yields extraordinarily-smooth
sampling of “round things,” with even resolution and
without “cusp points” or “special meridians.”

Radially-Symmetric Part
Examples



ABAQUS Meshes

DRACO can also parse input decks describing meshed objects
for the ABAQUS finite element code.

This capability was desirable to allow the sharing of common
meshes between groups working on different aspects of a
problem.

Example objects rendered by DRACO from ABAQUS meshes

Pressure
Vessel



Surfaces of parts are defined and represented in DRACO
via a triangular surface mesh.

Each triangle’s corners are surface elements
of the part. In image rendering, coloration,
corresponding to temperature, concentration, etc., is
determined via linear interpolation using barycentric
coordinates.

Surfaces

This surface representation also allows the
construction of parts that consist solely
of surfaces, i.e. they are 2D manifolds.

Such surfaces can be used to capture
processes that occur only on material
surfaces, or in gaps between objects.



• Surface Diffusion with Variable “Skin
Thickness”

Shown here: A radially-symmetric test surface object. 
The skin thickness, where diffusion occurs, is 
constricted in the red-shaded region to 1/50th of its 
value elsewhere.

(Cutaway view showing the interior)

A source spot in
the form of a circular
patch is here

1,000 time steps 6,000 time steps

10,000 time steps 15,000 time steps

The diffusion wave of higher
concentration takes much longer
to pass by the constriction

Variable Surface Thickness



Input Decks
DRACO reads in input decks provided by the user to specify all the parameters necessary to perform a
simulation. This includes everything about:

• The number of parts, part geometry, and mesh resolution.

• The nature and number of the diffusing/reacting species.

• Everything about image rendering and image/data
output.

• Specification of arbitrary initial condition, boundary
condition, and source functions. These can depend
on time, space, concentration, etc.

• Chemistry. Which species react with one another
in what quantities, at what rates, and with what 
products.

Example Input Deck Snippet



ui

u1

u3

uj

u4

u2

*  “An Integrated Finite Difference Method for Analyzing Fluid Flow in Porous Media,”
T. N. Narasimhan and P. A. Witherspoon, Water Resources Research, 12(1) 57-64 (1976).

DRACO operates by dividing up the volume of each
part into a Voronoi tessellation around the set of
grid points:

A Voronoi tessellation divides a volume into “cells”
around each point, where each point’s cell is the
region of closer to that point than any other.

This is advantageous because the diffusion operator can be
represented in terms of the tessellation geometry: 

Sum runs over all
neighbors j of cell i

Vi is the volume of cell i

Aij is the area of the facet between neighboring cells i and j

dij is the distance between cells i and j

is the harmonic mean* of Di and Dj

ui – uj is the concentration (or temperature, pressure,…)
difference between cells i and j

Under the Hood



Stability and Validation
Diffusion in the DRACO integration scheme is stable or unstable depending on the value of the CFL number:

Timestep

Resolution

The CFL number must be below a certain threshold for
stability. The exact threshold depends on the shape of
the part and the nature of the mesh. For instance, for
diffusion of random data in a sphere, by performing
calculations at many values of the time step Δt and
resolution Δx, we find that the CFL number and 
stability condition for a sphere are:

Red Points:
Unstable Simulations

Blue Points:
Stable Simulations

Random Data
in a Sphere



One way DRACO has been validated is by comparison
in problems which have an exact analytic solution:

Example: Diffusion in a sphere of radius R:

Initial Condition

On Boundary

Constant
Spherical
Harmonic

Cutaway View

DRACO simulation of this problem:

539,383 Elements



As t → ∞, we recover the RMS error
with respect to the equilibrium solution.

RMS error vs. time for an example simulation:

Simulations at various resolutions Δx can be used to check the
scaling of the error with Δx. As expected, DRACO is 2nd order
in Δx.

Initial “spike” in error
mostly due to Gibbs

phenomenon



Chemistry Model

Red:  X concentration
Blue: Y concentration

The “Brusselator” model of the Belousov-Zhabotinsky oscillating
chemical reaction, with random initial conditions and boundary
conditions, and simulated with in a spherical shell.

A ↔ X
2X + Y ↔  3X
B + X ↔  Y + D
X ↔  E

Here the random boundary conditions are held fixed
to provide seed points for symmetry breaking, leading to
nonlinear diffusion waves that propagate through the
system.



Dissipation of Laser-Induced Heating in Integrated Circuits

Silicon

Porous
SiO2
(30% void)

Tungsten

Copper

Silicon
Carbide

SiO2

Model of an integrated circuit (IC) consists of a 3D array
of voxels specifying the species at each position*.

*IC model data provided by Nina Weisse-Bernstein (ISR-2)

3.
4 

μm

4.9 μm

IC Layers
1-5

0.25 μm
Total

Thickness



The integrated circuit is illuminated by a 20-100 femtosecond
monochromatic laser pulse, which is modeled as having a
uniform “top hat” profile. The excess temperature ΔT(z)
deposited by the pulse at a depth z is then:

Photon Energy
(10 keV)

Number of Photons
in pulse (4 x 106)

Total Absorption
Coefficient

Spot Diameter
(2 μm)

Volumetric
Heat Capacity

Line Integral Of
Absorption From

Sample Surface To
Depth z

The time scale (fs) of the pulse is much shorter than the time
scale of heat dissipation by diffusion (ns), so this excess temperature
can be treated as if deposited instantaneously at t = 0. The above
profile is used as the initial condition for these simulations.

Laser
Pulse

Spot
Heating
At t = 0

Sample remains instantaneously
cool around the spot



Simulation Details:

Resolution:
Δx ≈ 25 nanometers

Time step:
Δt ≈ 0.5 picoseconds

Number of DRACO Elements:
291,720

Boundary Conditions:
ΔT = 0  On edges (Dirichlet)
Insulated on top/bottom (Neumann)

Layer 1 Layer 2

Layer 3 Layer 4 Layer 5

ΔT ≥ 10 K

ΔT = 0 K



for large t


